Skip to main content

Camera Histogram Demo


There is a really cool demo for opencv in C called camshiftdemo. I decided to write a version in python... The only one I could find online used opencv with ctypes, so this was a simple enough modification to get it running in more pure "swigged" python. It's in my pycam repository if anyone is interested: http://code.google.com/p/pycam/source/browse/trunk/pycam/cam-histo.py


Here are some screenshots.



This is the python cam shift demo tracking the orange on the XO's logo.
Now tracking the green section, you can see the histogram for the entire image shown. It is a really simple demo, and quite fun! At the Hitlab open night this was what I used to keep the kids occupied!
Unlike the previous computer vision post - this doesn't use pygame at all. It would be a really good example for the XO pippy computer vision package idea however.

Comments

Popular posts from this blog

Matplotlib in Django

The official django tutorial is very good, it stops short of displaying
data with matplotlib - which could be very handy for dsp or automated
testing. This is an extension to the tutorial. So first you must do the
official tutorial!
Complete the tutorial (as of writing this up to part 4).

Adding an image to a view

To start with we will take a static image from the hard drive and
display it on the polls index page.
Usually if it really is a static image this would be managed by the
webserver eg apache. For introduction purposes we will get django to
serve the static image. To do this we first need to change the
template.



Change the template
At the moment poll_list.html probably looks something like this:


<h1>Django test app - Polls</h1> {% if object_list %} <ul> {% for object in object_list %} <li><a href="/polls/{{object.id}}">{{ object.question }}</a></li> {% endfor %} </ul> {% else %} <p>No polls are available.</p> …

Homomorphic encryption using RSA

I recently had cause to briefly look into Homomorphic Encryption, the process of carrying out computations on encrypted data. This technique allows for privacy preserving computation. Fully homomorphic encryption (FHE) allows both addition and multiplication, but is (currently) impractically slow.

Partially homomorphic encryption just has to meet one of these criteria and can be much more efficient.
An unintended, but well-known, malleability in the common RSA algorithm means that the multiplication of ciphertexts is equal to the multiplication of the original messages. So unpadded RSA is a partially homomorphic encryption system.

RSA is beautiful in how simple it is. See wikipedia to see how to generate the public (e, m) and private keys (d, m).

Given a message x it is encrypted with the public keys it to get the ciphertext C(x)with:

C(x)=xemodm
To decrypt a ciphertext

Bluetooth with Python 3.3

Since about version 3.3 Python supports Bluetooth sockets natively. To put this to the test I got hold of an iRacer from sparkfun. To send to New Zealand the cost was $60. The toy has an on-board Bluetooth radio that supports the RFCOMM transport protocol.



The drive protocol is dead easy, you send single byte instructions when a direction or speed change is required. The bytes are broken into two nibbles: 0xXY where X is the direction and Y is the speed. For example the byte 0x16 means forwards at mid-speed. I was surprised to note the car continues carrying out the last given demand!

I let pairing get dealt with by the operating system. The code to create a Car object that is drivable over Bluetooth is very straight forward in pure Python:

importsocketimporttimeclassBluetoothCar:def__init__(self,mac_address="00:12:05:09:98:36"):self.socket=socket.socket(socket.AF_BLUETOOTH,socket.SOCK_STREAM,socket.BTPROTO_RFCOMM)self.socket.connect((mac_address,1))def_write(self,data_byte):…